Каталог курсов
Избранное

Data Scientist: расширенный курс

С нуля освоите навыки анализа данных и обучения нейронных сетей, чтобы стать универсальным специалистом в Data Science

Сможете искать работу в новой сфере уже через 8 месяцев обучения

Получите возможность пройти стажировку у наших партнёров

Поможем подобрать обучение
Международный
Нажимая кнопку, принимаю условия политики и пользовательского соглашения
Когда
29 мая 2024 — 8 июня 2026
Стартует через 6 дней
Не подходит дата старта? Запишитесь сейчас, а учитесь со следующим набором

Формат

Онлайн, потребуется от 10 часов в неделю

Гибкий график

Подберём индивидуальный темп обучения

Документ

Диплом о профессиональной переподготовке

40%
с 22.05 по 24.05

Провожаем весну скидками

Скидка уже включена в стоимость. Оплатите до 24 мая, чтобы скидка не сгорела.

Условия акции

Чем занимается Data Scientist

Дата-сайентист работает с большими объёмами данных. На их основе специалист находит закономерности и прогнозирует развитие событий с помощью моделей машинного обучения.

Например, в банковской сфере может спрогнозировать реакцию клиента на кредитное предложение, в ритейле — создать модель для выбора нового места торговой точки в зависимости от района, арендной платы и близости конкурентов. Системы распознавания лиц, голосовые помощники и ChatGPT — тоже дело рук дата-сайентистов.

Пример из практики эксперта, выпускника Нетологии

Каждый раз перед нами встаёт задача оценки долгового портфеля по набору разносортных данных о должниках. Мы должны оценить такие параметры, как сумма кредита, пол, возраст, регион проживания, уровень дохода и особенности семейного положения.

Исходя из этих данных нам нужно предоставить помесячный прогноз по денежному обороту портфеля на несколько лет вперёд: сколько денег потратим, сколько взыщем и прочее — для определения максимально адекватной стоимости покупки клиента. Кроме того, на основе данных мы готовим полноценный анализ типичного должника для понимания нашей целевой аудитории.

Зная данные о клиентах, мы помогаем бизнесу принимать правильные решения

Строим сложные модели на основе машинного обучения

Подбираем оптимальные умные алгоритмы, настраиваем их, обучаем и замеряем качество

Выдаём детальный анализ и прогноз по денежным потокам очень высокого качества

Зарплата Data Scientist

По данным hh.ru, в среднем составляет

  • 70 000–120 00 ₽

    Junior-специалист
    с опытом до 1 года

  • 135 000–210 000 ₽

    Middle-специалист
    с опытом 1–3 года

  • от 220 000 ₽

    Senior-специалист
    с опытом более 3 лет

Почему этот курс расширенный

Плавный вход

Первая ступень программы включает основы аналитики и статистики в Google Таблицах, а также основы визуализации данных — чтобы погружение в аналитику было комфортным, даже если у вас нет технического образования

Навыки
универсального специалиста

Освоите глубокое обучение нейросетей и продвинутые методы работы с Big Data, чтобы строить рекомендательные системы и временные ряды, работать с изображениями и текстом. Это позволит вам выделиться на рынке труда

Больше партнёров по трудоустройству

Получите больше возможностей для стажировок и решения рабочих кейсов крупных компаний, которые можно положить в портфолио в дополнении к учебным

Чему вы научитесь

Работать с базами данных

Получать данные с помощью SQL из различных источников, выгружать их в нужном формате. Создавать собственные БД, работать с хранимыми процедурами и функциями

Использовать Python и библиотеки

Очищать и преобразовывать данные, проверять гипотезы, находить скрытые закономерности, визуализировать результаты

Применять математику и статистику

Освоите необходимый математический аппарат для решения задач машинного обучения и построения нейросетей

Строить модели машинного обучения

Конструировать признаки, строить классические модели машинного обучения, временные ряды и создавать рекомендательные системы

Обучать многослойные нейронные сети

Проверять гипотезы, строить нейронную сеть, выявлять скрытые аномалии в данных

Лидировать Data-проекты, работать в команде и находить общий язык с заказчиком

Формулировать гипотезы, выявлять потребности, структурировать и визуализировать результаты

Дополнительно сможете углубиться в особенности работы с данными в сферах медицины и промышленности

DS в медицине

Разберётесь в специфике работы с табличными данными, анализе медицинских текстов и изображений. Решите реальные задачи при поддержке специалистов в сфере анализа медданных

DS в промышленности

Научитесь обрабатывать данные с датчиков на промышленном оборудовании. Рассмотрите сложности при реализации проектов по предиктивной аналитике, классические подходы и рекомендации по разработке моделей

Выполните более 20 проектов для портфолио

Каждый проект будет направлен на отработку нескольких навыков. Вот только некоторые примеры

Основы аналитики

Разработаете систему аналитики для учёта и планирования отпусков. Построите систему анализа домашней бухгалтерии на основе ваших данных

Сможете участвовать в соревнованиях Kaggle с ментором

• Под руководством опытного наставника примете участие в конкурсах, сможете заработать рейтинговые очки или денежные призы

• Рейтинг в Kaggle — преимущество при приёме на работу, его указывают во многих вакансиях

Программа обучения —
24 месяца

316 часов теории и 462 часа практики
Скачать программу

Вебинары с экспертами в прямом эфире проходят 1-2 раза в неделю, начинаются в промежутке с 18:00 до 20:00 МСК

На лекции и практические задания понадобится 10-15 часов в неделю

Записи вебинаров и митапов, видеолекции, презентации, лонгриды, тесты, тренажёры и другие полезные материалы хранятся в личном кабинете

Чтобы программа соответствовала запросам рынка труда, мы проводим 3 этапа исследований

1 ступень. Погружение

На первом этапе вы разберётесь, что такое аналитическое мышление, и узнаете, откуда берутся данные. Научитесь определять ключевые продуктовые метрики и создавать дашборды.

Аналитическое мышление

Курсовой проект

Научитесь думать как аналитик и формулировать гипотезы для проверки. Поймёте, что аналитика строится вокруг данных. Познакомитесь с базовым инструментом аналитика и сможете проводить в нём простой анализ данных.

20 часов теории

38 часов практики

Что такое аналитическое мышление

Введение в Google-таблицы

Продвинутые Google-таблицы

Основы статистики

Откуда берутся данные

Продвинутая визуализация данных

Python как инструмент анализа данных

Машинное обучение для жизни

Основы практической статистики

Курсовой проект

Познакомитесь со статистическими показателями, научитесь проводить статистический анализ данных и проверять гипотезы с помощью различных инструментов.

8 часов теории

14 часов практики

Что такое статистика и для чего она нужна

Основные статистические показатели, виды распределений данных, корреляция

Взаимосвязи данных и формулирование гипотез по SMART

Статистические критерии в Google Таблицах. Проверка гипотез и формулирование выводов

Основы визуализации данных

Поймёте, как создавать наглядные визуализации, откуда берутся данные для визуализации и как с ними работать. Узнаете, как создавать истории с помощью данных.

6 часов теории

11 часов практики

Как донести информацию с помощью изображений

Инструменты, источники и предподготовка данных

Исследование данных и основы статистики

Продвинутая визуализация данных

Сторителлинг в визуализации

2 ступень. SQL, Python и Big Data

Вы освоите ключевые навыки специалиста в Data Science для старта в профессии и сможете искать работу на младшей позиции уже после прохождения второй ступени.

SQL и получение данных

Курсовой проект

В идеальном мире data scientist получает готовые данные, чтобы строить модели, но мир неидеален. Вы научитесь с помощью SQL получать данные из БД, фильтровать, агрегировать, а также импортировать и экспортировать.

20 часов теории

32 часа практики

Архитектура и структура баз данных (БД)

Простые запросы, join`s, агрегаты

Базовые команды в SQL и встроеные аналитические функции

Импорт и экспорт данных посредством SQL и ETL программ

Принципы работы с различными БД

Основные библиотеки для подключения к БД из Python

Функции SQL и их аналоги в pandas

Консоль: знакомство, основные операторы, утилита psql

Архитектура и проектирование

Нормализация

Зависимости

Подготовка и сдача итогового проекта

Аналитика больших данных

Курсовой проект

Узнаете, как собрать и управлять командой Big Data-проекта. Освоите подход CRISP-DM, определите компетенции и состав команды. Определите, сколько данных вам нужно для нахождения инсайтов. Найдёте задачи под Big Data в своей компании. Поймёте, как и по каким правилам хранить данные. Сможете обосновывать влияние на сбор данных, мониторинг и отчётность.

12 часов теории

37 часов практики

Что такое большие данные

Монетизация больших данных

Характеристики и источники данных

Культура сбора данных

Основы реализации проектов больших данных. Кейс-стади

Основные характеристики больших данных и виды анализа данных. Продвинутые методы анализа больших данных

NoSQL-подход

MapReduce-подход

Введение в Hadoop

Практическое задание по аналитике данных и его разбор

Python для анализа данных

Курсовой проект

Вы научитесь пользоваться базовыми инструментами и подходами в Python, чтобы начать работать с данными. Повторите основы линейной алгебры, теории множеств, методов математической оптимизации, описательной статистики, статистического анализа данных, а также научитесь реализовывать это на языке Python.

66 часов теории

83 часа практики

Базовые типы данных и циклы

Функции и классы

Продвинутые типы данных: массивы, множества, словари

Библиотеки для анализа данных: NumPy, Pandas, Matplotlib

Визуализация в Python

Базовые понятия статистики

Случайные события. Случайные величины

Логистическая регрессия и дискриминационный анализ

Корреляция и корреляционный анализ

Доверительные интервалы. Статистическая проверка гипотез для несвязанных выборок

Дисперсионный анализ и виды ошибок. А/В-тесты

Математика для анализа данных

Курсовой проект

Изучите основные операции с векторами, матричными операциями. Рассмотрите генетические алгоритмы, алгоритм дифференциальной эволюции. Узнаете, что такое математическое ожидание, дисперсия и моменты старших порядков. Изучите закон больших чисел.

9 часов теории

37 часов практики

Линейная алгебра. Вектора

Линейная алгебра. Матрицы

Продвинутая линейная алгебра

Математический анализ. Производная

Производная функции нескольких аргументов

Теория оптимизации

Теория вероятностей. Дискретные и непрерывные случайные величины

Центральная предельная теорема и закон больших чисел

Работа с признаками и построение моделей

Научитесь проверять данные на полноту, целостность, валидность, наличие шумов, ошибок и пропусков. Узнаете, как очищать данные с помощью NumPy и Pandas, как сокращать размерности данных алгоритмами PCA, LDA, NMF. Научитесь строить деревья решений и модели логистической, линейной и полиномиальной регрессии. Узнаете, как использовать Random Forest в задачах классификации.

42 часа теории

37 часов практики

Регрессионный анализ. Линейная, полиномиальная и логарифмическая регрессия

Классификация: логистическая регрессия и SVM

Функции потерь и оптимизация

Оценка точности модели, переобучение, регуляризация

Проблема качества данных

Работа с пропусками и переменными

Тренировочные собеседования по SQL и Python

На вебинарах с экспертами мы предложим вам аналоги тестовых заданий для соискателей на позиции в аналитике данных и Data Science. Сначала вы попробуете решить задание самостоятельно, а потом разберёте его с экспертом. В результате вы:

• Поймёте, как не теряться при работе с абсолютно незнакомыми данными

• Научитесь выбирать и использовать инструменты в соответствии с поставленной задачей

• Подготовитесь психологически к решению тестовых заданий на собеседовании

Программа трудоустройства

Научитесь оформлять резюме и портфолио, справляться со сложными вопросами на собеседовании и искать актуальные вакансии. Центр развития карьеры отправит ваше резюме партнёрам Нетологии и будет присылать подборки подходящих вакансий.

Узнаете, как составить резюме, оформить портфолио и написать сопроводительное письмо так, чтобы вас пригласили на собеседование

Научитесь презентовать себя и отвечать на самые каверзные вопросы на интервью

Разберётесь, как и на каких площадках ищут работу IT-специалисты

Рассмотрите вакансии и стажировки от наших партнёров

Получите приглашение в сообщество выпускников, где сможете поделиться своими успехами, воспользоваться советами и поддержкой

3 ступень. Deep Learning и нейронные сети

Получите расширенные знания в профессии и научитесь работать с нейронными сетями. Начнёте повышать свою квалификацию. После окончания этой ступени сможете наработать навыки уровня middle и претендовать на большее количество вакансий.

Рекомендательные системы

В этом и следующих блоках вы будете применять полученные знания в разных областях машинного обучения. Во время этого блока научитесь строить персонализированные и неперсонализированные рекомендательные системы, а также комбинировать их.

10 часов теории

9 часов практики

Неперсонализированные рекомендательные системы

Сontent-based-рекомендации

Collaborative Filtering

Гибридные алгоритмы

Временные ряды

Вы изучите элементарные алгоритмы обработки временных рядов, модели ARIMA и GARCH, прогнозирование значений на их основе. Узнаете, что такое марковские случайные процессы и марковские модели для временных рядов.

16 часов теории

18 часов практики

Знакомство с временными рядами

Элементарные методы анализа временных рядов

Модели ARMA

Модели авторегрессии условной гетероскедастичности

Сингулярный спектральный анализ

Случайные марковские процессы

Нейронные сети в анализе временных рядов

Поиск изменений во временном ряде

Нейронные сети

Научитесь строить простые полносвязанные сети уровня LeNet и AlexNet и экспериментировать с их обучением. Получите теоретическую и практическую базу для использования НС в блоках CV и NLP.

10 часов теории

6 часов практики

Введение в нейронные сети и библиотеку Keras

Углубление в нейронные сети и библиотеку Keras

Введение в свёрточные нейронные сети

Введение в рекуррентные сети

Автокодировщики

Введение в генеративно-состязательные сети

Компьютерное зрение

Вы освоите основные техники машинного зрения — извлечение признаков, поиск по картинкам, сегментирование, детекция объектов.

22 часа теории

12 часов практики

Выделение признаков и поиск похожих изображений

Сегментация и детекция объектов

Свёрточные нейронные сети

Обучение свёрточной сети на практике

Задачи детекции и сегментации

Рекуррентные нейронные сети в задачах компьютерного зрения (Image Captioning)

Порождающие модели

Обработка естественного языка

Вы освоите морфологический и синтаксический анализ, дистрибутивную семантику и информационный поиск, научитесь снижать размерность в векторной модели, классифицировать, извлекать информацию и генерировать тексты.

21 час теории

12 часов практики

Введение в автоматическую обработку текста

Структура слова. Морфология

Синтаксический анализ

Дистрибутивная семантика

Извлечение ключевых слов

Словари. Подкрепление знаний

Тематическое моделирование

Информационный поиск

Классификация в АОТ

Языковые модели

Извлечение информации

Deep Learning

Курсовой проект

Научитесь работать с многомерными свёртками, овладеете конкурентным преимуществом в задачах с использованием Beam-Search и Teacher Forcing, сможете реализовывать NLP с нуля. Сможете отличать дискриминатор от генератора и обучать генератор выбирать данные из линейной регрессии. Реализуете сеть генерации покемонов и обучите её.

38 часов теории

65 часов практики

Регрессия и персептрон

Многослойная нейронная сеть: регуляризация, градиентный спуск, ускорение обучения

Свёрточные сети: свёрточные архитектуры, многомерные свертки, сегментация

Рекуррентные сети: RNN, GRU и LSTM, Encoder-Decoder архитектура

Внимание: Dense Attention и Beam search

Компьютерное зрение: SSD, Region Based CNN, Faster R-CNN, Masked R-CNN, UNet, перенос стиля и FCN

Работа с текстом: языковые модели, Embeddings, Word2Wec, FastText, NER, Transformer, BERT и Elmo

GAN'ы: дискриминатор, генератор, продвинутые архитектуры

Финальный хакатон и Kaggle Competitions

В составе мини-команды за ограниченное время на основе датасетов крупных игроков рынка вам придётся решать задачи по прогнозированию продаж или оптимизации производства, задействуя все знания и навыки, полученные на курсе.

Интеграция и использование machine learning решений в бизнесе, как правило, подразумевает командную игру, поэтому хакатон полезен ещё и как тренировка необходимых soft skills.

8 часов практики

Английский для специалистов по работе с данными

Научитесь разбираться в аналитических терминах и читать иностранную техническую документацию. Сможете презентовать результаты анализа с помощью графиков и диаграмм на английском языке. Узнаете, как эффективно готовиться к собеседованиям в зарубежные компании. Научитесь составлять убедительное резюме и писать сопроводительное письмо.

7 часов теории

7 часов практики

Словарь терминов аналитика с примерами употребления и типичными словосочетаниями

Важная лексика для работы с датасетами

Презентация результатов анализа

Чтение технической документации

Самопрезентация. Elevator Pitch

Прохождение собеседований

Резюме и сопроводительное письмо (CV & сover letter)

Email-переписка

Общение в технических чатах

Как вести звонки и встречи

Как учить лексику

Как учить грамматику


Дипломный проект — ML-модель
для решения профессиональных задач 

Тему выбираете самостоятельно: это может быть система прогнозирования продаж, распознавание объектов на фото или видео, анализ временных рядов или больших объёмов текста. Вы также можете защитить итоговую работу на основе данных с Kaggle.

В работе над проектом вам будет помогать дипломный руководитель. Для каждого студента предусмотрены 4 индивидуальных консультации с экспертом в выбранной сфере.

Если у вас нет данных для собственного проекта, мы предложим учебный кейс — на основе реального датасета нашего партнёра Dodo Brands.

4 ступень. Специализация на выбор

Продвинутый тариф

Углубитесь в особенности работы с медицинскими и промышленными данными, решите типичные для этих сфер задачи. Специализированные навыки повысят вашу профессиональную ценность и позволят выделиться на рынке труда. Получить полезный опыт в промышленном Data Science поможет стажировка в компании «Северсталь.Диджитал».

Data Science в медицине

Разберётесь в направлениях работы с данными. Познакомитесь со спецификой работы с разными типами медданных: табличными, текстовыми и снимками, попрактикуетесь в решении реальных задач. Узнаете, как устроены бизнес-процессы в медицине и как наладить коммуникацию с врачами и заказчиками.

32 часа теории

36 часов практики

Обзор исследовательских компаний, баз данных и основных поставщиков данных в медицине

Особенности структуры данных в медицине, принципы хранения и работы с такими данными

МДЛП — система маркировки лекарственных средств, влияние и роль системы на медицинскую отрасль, особенности работы и хранения подобных данных

ЕМИАС — Единая медицинская информационно-аналитическая система, особенность системы, примеры работы и хранения подобных данных

Анализ клинических рекомендаций Минздрава в разрезе нозологий, классификации МКБ, классификации болезней

CV и ML для обработки медицинских снимков МРТ, рентген, результатов анализов

NLP для обработки медицинских текстов

Юридические аспекты работы с медицинскими данными

Подготовка и сдача итогового проекта

Дипломный проект «Data Scientist в медицине»

Вы построите ML-модель для решения задач в сфере медицины.

Это может быть система по предсказания динамики продаж лекарственных средств в аптеках, распознаванию медицинских объектов на изображениях, прогнозирование распространения заболеваний с помощью анализа временных рядов или извлечение медицинских сведений из неструктурированного текста.

Предусмотрена индивидуальная часовая консультация с ментором по итоговой работе.

Data Science в промышленности

Научитесь обрабатывать данные с датчиков на промышленном оборудовании. Узнаете, как спроектировать решение, чтобы его было проще тиражировать. Рассмотрите основные кейсы в промышленном CV. Поймёте, какие алгоритмы применяются в каждом типе задач в зависимости от количества данных на входе, типов детектируемых событий и производственного процесса. Узнаете, как подобрать камеры, освещение и серверное оборудование.

32 часа теории

40 часов практики

Методика разработки Data Science-продуктов в промышленности. Особенности работы с промышленными данными

Причинно-следственный анализ в машинном обучении: causal inference

Оптимизационные задачи, алгоритмы и инструменты оптимизации

Фреймворки для разных типов CV-задач в промышленности: на что обращать внимание при выборе

ML и физика: основные подходы для объединения двух типов моделей: физических уравнений процесса и ML

Основные варианты размещения оборудования в промышленности и архитектура решения, которая за этим стоит

EDA для промышленности

Сложные задачи и вывод CV-моделей в продуктив

Продвинутые задачи: сбор данных при их практическом отсутствии, различные способы синтеза данных, обучение на синтетических данных

Дипломный проект «Data Science в промышленности»

Самостоятельно сделаете решение по определению посторонних предметов на конвейерах — от EDA до оптимизированной модели, готовой к выводу в продуктив.

Предусмотрена индивидуальная часовая консультация с ментором по итоговой работе.

Проекты наших студентов

Определение болезни Альцгеймера
Татьяна Корнева

Курсы по менеджменту дата-проектов и Soft Skills в подарок

• Научитесь выбирать подходящие методы и алгоритмы, планировать решение задач, разрабатывать отчёты по исследованиям. Освоите методологии управления проектами в Data Science

• Узнаете, как проводить эффективные переговоры, и потренируете навыки публичных выступлений

Партнёры по трудоустройству

В процессе обучения сможете пройти стажировку у наших партнёров

40%
с 22.05 по 24.05

Провожаем весну скидками

Скидка уже включена в стоимость. Оплатите до 24 мая, чтобы скидка не сгорела.

Условия акции

Если вы уже прошли курс, входящий в профессию, учитесь дальше со скидкой в размере стоимости курса. При расчёте скидки учитываются фактически пройденные занятия.

Как проходит обучение
.01

Учитесь в удобном для вас темпе

На курсах есть расписание, но если вы понимаете, что не успеваете, то можно двигать дедлайны по заданиям, смотреть вебинары в записи и приостанавливать обучение на срок до 6 месяцев.

Преподаватели — эксперты ведущих компаний

Мы регулярно проводим внутренние митапы

Это неформальные встречи выпускников и студентов Нетологии с экспертами и потенциальными работодателями

Каждый участник может задать экспертам вопросы, получить ответы или поделиться собственной историей. Митапы проходят раз в две недели по вечерам.

Ваше резюме после обучения

Data Scientist

    Ключевые навыки

  • Сбор и подготовка данных для анализа
  • Написание SQL-запросов для получения данных

  • Выбор и создание признаков для модели

  • Выбор и реализация алгоритма под задачу
  • Группировка и фильтрация данных

  • Создание нейросетей
  • Генерация текстов и изображений
  • Создание рекомендательных систем
  • Нахождение объектов на изображениях

  • Обучение языковых моделей

  • Работа с механизмом внимания

  • Решение задач машинного перевода на основе рекуррентных сетей

  • Использование различных методов модификации изображений

  • Решение задач классификации, межъязыкового семантического поиска и генерации продолжения текста

Инструменты

Scikit-learn

Scikit-learn

Базовая библиотека в Python для построения алгоритмов машинного обучения

OpenCV

OpenCV

Библиотека алгоритмов компьютерного зрения, обработки изображений и численных алгоритмов общего назначения с открытым кодом

PostgreSQL

PostgreSQL

Одна из самых популярных реляционных баз данных с открытым исходным кодом. На её основе работает множество приложений для анализа геопространственных данных и мобильных приложений

NLTK

NLTK

Набор библиотек и программ Python для символьной и статистической обработки естественного языка

Pandas

Pandas

Наиболее продвинутая и быстроразвивающаяся библиотека для обработки и анализа данных в Python

Tensorflow

Tensorflow

Открытая программная библиотека для машинного обучения, разработанная Google для решения задач построения и тренировки нейронной сети

Многослойные нейронные сети

Многослойные нейронные сети

Все виды градиентного спуска, включая Adam, RMSProp, Momentum, SGD. Регуляризация и Dropout на основе MNIST.

Свёрточные сети и архитектура

Свёрточные сети и архитектура

Свёртки и методы Padding & stride, Pooling и LeNet применительно к AlexNet, VGG, NiN, GoogLeNet, ResNet, DenseNet, densenet, mobilenet. Аугментация и TransferLearning. Языковые модели в RNN, GRU и LSTM. Декодер Teacher Forcing

Apache Spark

Apache Spark

Фреймворк с открытым исходным кодом для реализации распределённой обработки неструктурированных и слабоструктурированных данных

Keras

Keras

Открытая нейросетевая библиотека, написанная на языке Python

Pytorch

Pytorch

Библиотека глубокого обучения для решения задач компьютерного зрения и NLP

Алгоритмы внимания

Алгоритмы внимания

Понимание идеи attention'а. Dense-Attention для encoder-decoder архитектуры. Beam-Search и диалоговые боты

Вашу квалификацию подтвердит диплом о профессиональной переподготовке

Мы обучаем по государственной лицензии и выдаём документы установленного образца.

Поможем найти
ту самую работу
Центр развития карьеры
помогает трудоустроиться студентам Нетологии
1
Научим составлять резюме и проходить интервью
Разберём ваш предыдущий опыт, определим сильные стороны и поможем составить успешное резюме. Научим презентовать себя и проведём тест-драйв интервью.
2
Поможем наработать практику и оформить портфолио
Приобретёте практический опыт и наполните портфолио ещё во время обучения. Разберёте тестовые задания от работодателей и сможете принять участие в их проектах.
3
Предложим стажировки и проекты от партнёров
Предоставим доступ к карьерной странице со стажировками и вакансиями от партнёров Нетологии. Будем делиться подборками с новыми интересными вакансиями.
header
Воркшопы и много практики
Вы сможете сформировать портфолио, выполняя задания компаний-партнёров Нетологии или проходя у них стажировки. Сфокусируетесь на практике, откликах и результате. Поработаете над реальными заданиями, защитите свои решения и получите развивающую обратную связь.
84%
студентов нашли работу с помощью Центра развития карьеры
4 075
компаний-партнёров в базе Нетологии для отработки практики
skyeng1Clamodaramblerraiffeisenvkozonagimakasperskyalfa2gisgettaic

Наши выпускники достигают успеха, вот их истории

Иван Тармосин

До курса — управляющий салона мебели, после курса — Data Scientist и главный разработчик моделей оценки в «Агентстве судебного взыскания»

В Нетологии я получил абсолютно бесплатный курс по трудоустройству, на котором меня научили составлять резюме и портфолио, правильно вести себя на интервью и так далее. Я откорректировал параметры своего поиска по их рекомендациям, закончил курс SQL, и вот чудо — меня начали приглашать на собеседования!


Почитать всю историю.

Сергей Сорокопудов

До курса — менеджер по продажам в автомобильной и газовой отрасли, после курса — Data Scientist в компании, которая специализируется на видеоаналитике

Что помогло мне добиться успеха? Здесь всё банально: целеустремлённость, ответственный подход к делу, усидчивость и остальное в этом роде. Но самое главное — большое желание сменить сферу деятельности на IT.


Почитать всю историю.

Вернём деньги, если обучение не подойдёт

Деньги можно вернуть в любой момент.
В течение первых трёх занятий вернём вам полную сумму, а начиная с четвёртого — рассчитаем сумму возврата или поможем выбрать другой курс взамен.

Подробные условия

Предложение для компаний

Вы можете обучить сотрудников на этом курсе. Адаптируем программу под ваш бизнес и предоставим отчёты об успеваемости. При обучении сразу нескольких сотрудников — более выгодная стоимость.


Оставьте заявку, мы свяжемся с вами, чтобы подготовить индивидуальное предложение.

Международный

Все уроки теперь и в мобильном приложении

Мы разработали платформу для смартфонов, чтобы вы могли учиться в спортзале, самолёте, на даче или в пути.

  • Учитесь, где нравится 

    Доступ к учебным материалам всегда под рукой: это экономит ваши ресурсы

  • Занимайтесь даже без интернета

    Можно скачать материалы на телефон и учиться даже там, где плохая связь

  • Получайте подсказки по дедлайнам

    Приложение работает как помощник: напомнит про домашнюю работу или вебинар

  • Загружайте задания с телефона

    Удобно отслеживать статус практических работ и отвечать на комментарии преподавателя

40%
с 22.05 по 24.05

Провожаем весну скидками

Скидка уже включена в стоимость. Оплатите до 24 мая, чтобы скидка не сгорела.

Условия акции
24 месяца обучения, старт 29 мая
Запишитесь или получите консультацию
Частями без переплат
5 333 ₽/месяц
8 888 на 36 месяцев
Одним платежом
со скидкой 5%
182 400
 ₽
320 000
-40%
акция действует
до 24 мая
Международный
Нажимая кнопку, принимаю условия политики и пользовательского соглашения
Нашли дешевле? Сделаем скидку
Вернём деньги, если обучение не подойдёт
Возможность получить налоговый вычет — 13%
24 месяца обучения, старт 29 мая
Data Scientist: расширенный курс
Частями без переплат
5 333 ₽/месяц
8 888 на 36 месяцев
Одним платежом
со скидкой 5%
182 400
 ₽
320 000
-40%
акция действует
до 24 мая
Нашли дешевле? Сделаем скидку
Вернём деньги, если обучение не подойдёт
Возможность получить налоговый вычет — 13%
Запишитесь или получите консультацию
Международный
Нажимая кнопку, принимаю условия политики и пользовательского соглашения

Отвечаем на вопросы

  • Я гуманитарий, смогу ли учиться на дата-сайентиста?

    Курс ориентирован на новичков в аналитике и Data Science, без привязки к предыдущему опыту. В программе предусмотрен блок по математике, где вы сможете изучить или вспомнить основные математические концепции, важные для старта в DS. Не нужно быть чемпионом по математике, чтобы стать дата-сайентистом. 

  • Как организовано обучение?

    Обучение проходит на образовательной платформе Нетологии. У вас будет личный кабинет с доступом к вебинарам, видеолекциям, дополнительным материалам, домашним заданиям и чату.

  • Смогу ли я найти работу дата-сайентистом после обучения на этой программе?

    Да, вы сможете претендовать на стартовые позиции аналитика данных после 5–6 месяцев обучения, а к концу курса выйти на уровень миддла в DS. Студенты программы могут обратиться в Центр развития карьеры Нетологии: получить консультацию и рекомендации по упаковке своего опыта в резюме. Мы регулярно публикуем вакансии и стажировки для начинающих в закрытом чате. Эксперты курса часто ищут джунов среди наших студентов, потому что знают качество обучения изнутри.


  • Я уже слишком взрослый, чтобы менять профессию. До скольки лет можно учиться аналитике и Data Science?

    У нас учатся и вчерашние школьники, и взрослые. Согласно опросу, самым взрослым из наших студентов  60 лет. Аналитика — это место, где мудрость и жизненный опыт становятся преимуществом.

  • Смогу ли я совмещать учёбу и работу?

    Большинство наших студентов параллельно учатся и работают. Гибкие форматы обучения — вебинары, видеолекции в записи, лонгриды, тренажёр — позволяют выстроить удобный график и выделять время на учёбу. А если вы не будете успевать, команда сопровождения поможет подобрать вам комфортный темп, чтобы вы могли успешно завершить курс.

  • Мое расписание не совпадает с вашим. Что делать, если я не смогу попасть на вебинар?

    Мы понимаем, что не всегда удобно посещать вебинары в режиме реального времени. Поэтому вы всегда можете найти запись занятия в личном кабинете и просмотреть его в удобное время. Вебинары полезны тем, что на них можно задать вопросы эксперту и получить актуальную информацию обо всех изменениях в сфере аналитики.

все вопросы